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ABSTRACT 

In this investigation, a continuum mechanics based bi-linear shear deformable shell element is 

developed using the absolute nodal coordinate formulation for the large deformation analysis of 

multibody shell structures. The element consists of four nodes, each of which has the global 

position coordinates and the gradient coordinates along the thickness introduced for describing 

the orientation and deformation of the cross section of the shell element. The global position 

field on the mid-surface and the position vector gradient at a material point in the element are 

interpolated by bi-linear polynomials. The continuum mechanics approach is used to formulate 

the generalized elastic forces, allowing for the consideration of nonlinear constitutive models in a 

straightforward manner. The element locking exhibited in this type of element can be eliminated 

using the assumed natural strain (ANS) and enhanced assumed strain (EAS) approaches. In 

particular, the combined ANS and EAS approach is introduced to alleviate the thickness locking 

arising from the erroneous transverse normal strain distribution. Several numerical examples are 

presented in order to demonstrate the accuracy and the rate of convergence of numerical 

solutions obtained by the continuum mechanics based bi-linear shear deformable ANCF shell 

element proposed in this investigation. 

 

 


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1. INTRODUCTION 

The rectangular plate/shell elements of the absolute nodal coordinate formulation (ANCF) [1] 

can be classified into the fully parameterized shear deformable element [2,3] and the gradient 

deficient thin plate element [4,5]. While the fully parameterized element leads to a general 

motion description that accounts for complex coupled deformation modes of the plate/shell 

element, use of higher order polynomials and the coupled deformation modes exhibited in this 

type of element causes severe element locking and special care needs to be exercised to alleviate 

the locking [6]. The gradient deficient thin plate element, on the other hand, is developed by 

removing the position vector gradients along the thickness ( / z r ), and the global displacement 

field on the mid-surface can be uniquely parameterized by the global position vector and the two 

gradient vectors / x r  and / y r  which are both tangent to the surface. By doing so, the cross 

section is assumed to be rigid and the elastic forces are derived using an in-plane stress 

assumption with Kirchhoff-Love plate theory. This leads to the non-conforming plate element in 

which the inter-element continuity is guaranteed, while the conforming thin plate element can be 

obtained by introducing the additional nodal coordinates 2 / x y  r  with bi-cubic Hermite 

polynomials [4]. Despite the fact that the gradient deficient thin ANCF plate elements have 

proven to be successful in solving challenging engineering problems that involve large 

deformable thin plate and shell structures, consideration of general nonlinear constitutive models 

requires special formulations and implementation due to the in-plane stress assumption. 

 In recent years, an ANCF parameterization which does not include the position vector 

gradients tangent to the beam centerline and the mid-surface are investigated for shear 

deformable ANCF beam and plate elements. For beam problems, it is shown in the literature [7] 

that the elimination of the tangential slope vector along the beam centerline leads to accurate 
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elastic force descriptions due to weaker polynomial coupling between the displacement and 

gradient fields, and use of the general continuum mechanics approach for the elastic forces 

calculation allows for modeling curved beam structures in a straightforward manner. The 

assumed displacement field on the beam centerline does not involve slope coordinates, while the 

transverse slopes are employed to parameterize the orientation and deformation of the beam 

cross section. For plate elements, on the other hand, the position vector gradient along the 

thickness can be used to describe the orientation and deformation of the cross section of the plate 

element, and this parameterization leads to a shear deformable element that can capture the 

thickness deformation using the transverse slope vectors. That is, use of such an element 

parameterization leads to shear deformable plate elements while reducing the number of 

coordinates per node as discussed in the literature [8], in which a selective reduced integration is 

used to alleviate the transverse shear locking of the bi-linear shear deformable ANCF plate 

element. The element locking problem exhibited in the bi-linear shear deformable ANCF plate 

element is further investigated in the literature [9], in which the assumed natural strain (ANS) 

and the enhanced assumed strain (EAS) approaches are suggested to alleviate the transverse 

shear locking, thickness locking, and the in-plane normal/shear locking.  

 The elastic forces of the bi-linear shear deformable ANCF plate element in the literatures 

[8,9] are formulated based on the elastic mid-plane approach, in which the six strain components 

are evaluated on the mid-plane using Green-Lagrange strains and the approximated curvature 

expression is used to define the plate bending and twisting deformation. In other words, the 

strain distribution along the thickness is assumed to be constant in this approach, allowing for the 

evaluation of the elastic forces as an area element. Use of this element is limited to moderately 

thick flat plate problems due to the simplifying assumptions made in this model. Furthermore, 
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consideration of general nonlinear constitutive models requires special formulations and 

implementation as in the thin ANCF plate elements. Most challenging engineering problems that 

involves large deformable shell structures, on the other hand, call for accurate modeling of shell 

structures with various material nonlinearities, some of which include the modeling of rubber 

tires for vehicle/terrain interaction; wind turbine rotor blades made of composite materials; 

biomechanics applications with biomaterials; and many others. To achieve this goal, elastic 

forces of the shell element need to be developed as a continuum volume by considering the stress 

variation along the thickness using a general continuum mechanics approach, while the thickness 

locking can have an adverse impact on the accuracy as has been address for solid shell elements 

[10-13]. It is, therefore, the objective of this investigation to develop the continuum mechanics 

based bi-linear shear deformable shell element using the absolute nodal coordinate formulation. 

The paper that discusses the development of the bi-linear shear deformable ANCF shell 

element using the continuum mechanics approach is organized as follows. In Section 2, the 

kinematics and parameterization of the bi-linear ANCF shell element are presented, while the 

elastic forces based on the general continuum mechanics approach and remedies for the element 

locking exhibited in the element are discussed in Section 3. In Section 4, the equations of motion 

and the solution procedure are discussed. Numerical results and comparison with existing 

plate/shell elements are presented in order to demonstrate the effect of the element locking on the 

accuracy for the continuum mechanics based bi-linear shear deformable ANCF shell element in 

Section 5. Summary and conclusions drawn from this study are presented in Section 6. 

2. KINEMATICS OF BI-LINEAR SHEAR DEFORMABLE ANCF SHELL ELEMENT 

As shown in Fig. 1, the global position vector ir  of a material point T[ ]i i i ix y zx  in shell 

element i is defined as 
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( , ) ( , )
i

i i i i i i im
m i

x y z x y
z


 



r
r r     (1) 

where ( , )i i i

m x yr  is the global position vector on the mid-surface and ( , )i i i i

m x y z r is the 

transverse gradient vector used to describe the orientation and deformation of the infinitesimal 

volume in the element. The preceding global displacement field is interpolated using the bi-linear 

polynomials as follows: 

0 1 2 3 4 5 6 7( )i i i i i i i i i ir a a x a y a x y z a a x a y a x y          (2) 

from which, one can interpolate both position vector on the mid-surface and the transverse 

gradient vector using the same bi-linear shape function matrix i

mS  as follows: 

( , ) ( , ) , ( , ) ( , )
i

i i i i i i i i i i i i im
m m m m gi

x y x y x y x y
z


 



r
r S e S e   (3) 

where 
1 2 3 4

i i i i i

m S S S S   S I I I I  and 

           1 2 3 4

1 1 1 1
1 1 , 1 1 , 1 1 , 1 1

4 4 4 4

i i i i i i i i i i i iS S S S                     (4) 

where / ( / 2)i i ix   and / ( / 2)i i iy w  . i  and iw are lengths along the element ix  and iy  

axes, respectively. In Eq. 3, the vectors i

me  and i

ge  represent the element nodal coordinates 

associated with the global position vector on the mid-surface and the transverse gradient vector. 

That is, for node k of element i, one has ik ik
m e r  and ik ik i

g z  e r . It is important to notice here 

that the assumed displacement field i

mr  defined on the mid-surface in Eq. 3 does not involve any 

gradient coordinates, while the orientation and deformation of the infinitesimal volume at the 

material point in the shell element is parameterized by the transverse gradient coordinates only. 

Substitution of Eq. 3 into Eq. 1 leads to the following general expression for the global position 

vector used for the absolute nodal coordinate formulation: 
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( , , ) ( , , )i i i i i i i i ix y z x y zr S e     (5) 

where the shape function matrix iS  and the element nodal coordinate vector i
e  are, respectively, 

defined as 

, [( ) ( ) ]i i i i i i T i T T

m m m gz   S S S e e e    (6) 

3. CONTINUUM MECHANICS BASED SHEAR DEFORMABLE ANCF SHELL 

ELEMENT 

3.1 Generalized Elastic Forces using Continuum Mechanics Approach 

In the continuum mechanics approach, the elastic forces of the shell element are evaluated as a 

continuum volume and the Green-Lagrange strain tensor E  at an arbitrary material point in 

element i is defined as follows: 

 
1

( )
2

i i T i E F F I      (7) 

where iF  is the displacement gradient tensor defined by 

1

1( )
i i i

i i i

i i i



   
   
   

r r X
F J J

X x x
    (8) 

In the preceding equation, i i i  J r x  and i i i  J X x , where the vector iX  represents the 

global position vector of element i at an arbitrary reference configuration.  Substitution of Eq. 8 

into Eq. 7 leads to 

1( ) ( )i i T i i E J E J      (9) 

where iE  is the covariant strain tensor defined by 

 
1

( ) ( )
2

i i T i i T i E J J J J      (10) 
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The transformation (push-forward operation) of the covariant strain tensor iE  given by Eq. 9 can 

be re-expressed in a vector form by introducing the engineering covariant strain vector i
ε  as 

( )i i T iε T ε       (11) 

where the vector ε  in Eq. 11 is the engineering strain vector at the deformed configuration 

defined as 

[ ]i i i i i i i T

xx yy xy zz xz yz     ε     (12) 

and the engineering covariant strain vector is defined as 

[ ]i i i i i i i T

xx yy xy zz xz yz     ε     (13) 

The transformation matrix iT  in Eq. 11 can be expressed explicitly as 

2 2 2

11 12 11 12 13 11 13 12 13

2 2 2

21 22 21 22 23 21 23 22 23

11 21 12 22 11 22 12 21 13 23 11 23 13 21 12 23 13 22

2 2

31 32 31 32 3

( ) ( ) 2 ( ) 2 2

( ) ( ) 2 ( ) 2 2

( ) ( ) 2 (

i i i i i i i i i

i i i i i i i i i

i i i i i i i i i i i i i i i i i i

i

i i i i

J J J J J J J J J

J J J J J J J J J

J J J J J J J J J J J J J J J J J J

J J J J J

  
T

2

3 31 33 32 33

11 31 12 32 11 32 12 31 13 33 11 33 13 31 12 33 13 32

21 31 22 32 21 32 22 31 23 33 21 33 23 31 22 33 23 32

) 2 2i i i i i

i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i i

J J J J

J J J J J J J J J J J J J J J J J J

J J J J J J J J J J J J J J J J J J

 
 
 
 
 
 
   
 

    

  (14) 

and i

abJ  is the element in the a-th column and b-th row of matrix iJ  which is constant in time. 

The generalized elastic forces can then be obtained using the virtual work as follows: 

0
0i

T
i

i i i

k iV
dV

 
  

 


ε
Q σ

e
     (15) 

where iσ  is a vector of the second Piola–Kirchhoff stresses and 0

idV  is the infinitesimal volume 

at the reference configuration of element i. It is important to notice here that the element elastic 

forces are evaluated as a continuum volume, and the stress vector for the shell element can be 

obtained with various nonlinear constitutive models for large deformation problems without ad 

hoc procedures. 
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3.2  Element Locking for Transverse Shear and In-Plane Shear/Normal Strains 

As it has been addressed in literatures of shell element formulations [10-20], the bi-linear 

quadrilateral shell element suffer from the transverse shear locking and the in-plane shear/normal 

locking. The transverse shear locking can be eliminated using the assumed natural strain (ANS) 

approach proposed by Bathe and Dvorkin [16,17]. In this approach, the covariant shear strain 

components are interpolated using those evaluated at the sampling points A, B, C and D shown in 

Fig. 2 as follows: 

   

   

1 1
1 1

2 2

1 1
1 1

2 2

ANS C D

xz xz xz

ANS A B

yz yz yz

    

    


    


   


    (16) 

where C

xz , D

xz , A

yz  and B

yz  are compatible covariant transverse shear strains at the sampling 

points. 

The parasitic in-plane shear under pure bending loads is a typical locking problem 

exhibited in the bi-linear quadrilateral element [21], and the compatible in-plane strains ( xx , yy  

and xy ) obtained by the assumed displacement field can be enhanced by introducing the 

enhanced assumed strains (EAS) EAS
ε  as [14,15] 

c EAS ε ε ε       (17) 

where cε  indicates the compatible strain vector and the strain vector EAS
ε  is defined by 

( ) ( )EAS ε ξ G ξ α      (18) 

In the preceding equation, α  is a vector of internal parameters introduced to define the enhanced 

in-plane strain field and the matrix ( )G ξ  can be defined as [14,15] 
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0 T

0( ) ( )
( )


J

G ξ T M ξ
J ξ

     (19) 

where )(ξJ  and 0J  are displacement gradient matrices at the reference configuration evaluated 

at the Gaussian integration point ξ  and at the center of element ( 0ξ  ), respectively. ξ  is a 

vector of the element coordinates in the parametric domain and 0T is the constant transformation 

matrix evaluated at the center of element as shown in Eq. 14. The matrix )(ξM  defines 

polynomials for the enhancement of the in-plane strain field in the parametric domain. For 

example, the linear distribution of in-plane strains ( xx , yy  and xy ) requires introducing the 

following interpolation matrix )(ξM : 

0 0 0

0 0 0

0 0
( )

0 0 0 0

0 0 0 0

0 0 0 0





 

 
 
 
 

  
 
 
 
 

M ξ      (20) 

where the additional four internal EAS parameters associated with the four columns of the matrix 

)(ξM  are introduced in this model. Using Eq. 19, the enhanced covariant strains are then pushed 

forward to those at the deformed configuration in the physical domain. It is important to notice 

here that the matrix )(ξM  needs to satisfy the following condition [14]:  

0ξξM  d)(      (21) 

such that the orthogonality condition between the assumed stress and strain is satisfied as 

0
0 0EAS

V
dV  σ ε      (22) 
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Using the preceding condition, the unknown assumed stress term that appears in Hu-Washizu 

mixed variational principle vanishes and one can obtain the generalized elastic force vector as 

follows [14]: 

0
0

( )
i

T
c i c EAS

i i

k i iV

W
dV

   
   

  


ε ε ε
Q

e ε
    (23) 

where W  is an elastic energy function. For example, the elastic energy function W of the 

compressible neo-Hookean material model is defined as follows [22]:  

   
2

tr( ) 3 ln ln
2 2

W J J
 

   C     (24) 

where   and   are the Lamé constants; TC F F  is the right Cauchy-Green deformation tensor; 

and det( ) det( )J  F C . It is important to notice here that the right Cauchy-Green deformation 

tensor that accounts for the enhanced assumed strain modification is defined as follows: 

2( )c EAS  C E E I      (25) 

3.3  Thickness Locking 

Use of the transverse gradients in the ANCF shell element introduces thickness deformation 

modes and the locking associated with the transverse normal strain is exhibited in the bi-linear 

shear deformable ANCF shell element. The solid shell elements which consists of layers of 

translational nodal coordinates at the top and bottom surfaces of the element [10-13] and shell 

elements parameterized by extensible directors [18-20] suffer from the similar thickness locking 

resulting from the erroneous transverse normal strain distribution. The use of the assumed natural 

strain (ANS) approach is proposed in the literature [18] to alleviate the thickness locking of the 

shell element modeled by extensible directors and the transverse normal strain at a material point 

in the element is approximated as follows: 
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1 2 3 4

1 2 3 4

ANS ANS ANS ANS ANS

zz zz zz zz zzS S S S           (26) 

where k

zz  indicates the compatible transverse normal strain at node k as shown in Fig. 2 and 

ANS

kS  is the shape function associated with it. This approach is applied to the bi-linear shear 

deformable ANCF flat plate element formulated with the elastic mid-plane approach [9] to 

alleviate the thickness locking problem. Since the strain distribution along the thickens is 

assumed to be constant and the stress is evaluated on the mid-surface, use of the assumed natural 

strain approach can alleviate the thickness locking effectively if the compatible transverse 

normal strains at four corners on the mid-surface are accurate enough. However, in the case of 

the continuum mechanics approach, the elastic forces are evaluated as a continuum volume and 

the transverse normal strain are evaluated at the integration points which do not lie on the mid-

surface, thus better approximation of the transverse normal strain is needed to alleviate the 

thickness locking for the continuum mechanics based ANCF shell element. 

 It has been shown that the use of the enhanced assumed strain (EAS) approach leads to 

the better approximation of the transverse normal strain distribution and the thickness locking 

can be alleviated [11,19]. To this end, the additional internal EAS parameters associated with the 

enhanced transverse normal strain are added, and the interpolation matrix )(ξM  is augmented 

associated with it. For example, if the linear transverse normal strain term is introduced as a 

function of the thickness coordinate z, the interpolation matrix )(ξM  given in Eq. 19 is modified 

as 
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0 0 0 0

0 0 0 0

0 0 0
( )

0 0 0 0

0 0 0 0 0

0 0 0 0 0





 



 
 
 
 

  
 
 
 
 

M ξ     (27) 

where / ( / 2)z h  . It is important to notice here that there are no strain enhancement 

associated with the transverse shear strains xz  and yz  defined in the fifth and sixth rows. While 

there are zero sub-matrix associated with these strains in the matrix, the matrix ( )G ξ  define by 

Eq. 19 becomes a full matrix since the matrix T

0


T  is defined as a 6 6  full matrix evaluated at 

an arbitrary reference configuration. In the literature [19], the transformation matrix ( )G ξ  

associated with the enhanced in-plane and thickness strain terms are assumed to be decoupled 

and the approximated transformation matrix is used. In this investigation, the exact 

transformation matrix defined for the general three-dimensional stress state is considered.  

 To further improve the transverse normal strain distribution in the continuum mechanics 

based element, the compatible strain for the transverse normal strain is modified by the assumed 

natural strain approach defined by Eq. 26 as follows: 

ANS EAS

zz zz zz         (28) 

The similar approach is employed for solid shell elements in literature [11]. In this investigation, 

the combined ANS and EAS approach for the thickness locking is applied to the bi-linear shear 

deformable ANCF shell element. With this approach, the transverse normal strain improved by 

the ANS approach is further enhanced by the enhanced assumed strain approach. For application 

of the approach to the continuum mechanics based ANCF shell element, the covariant strain 

components of the transverse shear and transverse normal strains are interpolated in the natural 
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coordinate domain first and then the covariant strain vector given in Eq. 13 is replaced with the 

following strain vector: 

T
ANS ANS ANS

xx yy xy zz xz yz        ε    (29) 

The Green-Lagrange strains associated with the preceding covariant strains are evaluated using 

the transformation defined by Eq. 11. Having obtained the modified compatible strains, the 

enhanced assumed strains defined by Eq. 18 that considers the strain enhancement of the in-

plane shear/normal as well as the transverse normal strains are added to them with the 

interpolation matrix )(ξM  given by Eq. 27. This leads to a systematic derivation of the 

generalized elastic forces of the locking-free continuum mechanics based shear deformable 

ANCF shell element. 

4. EQUATIONS OF MOTION AND SOLUTION PROCEDURES 

Using the principle of virtual work in dynamics, the equations of motion of the shear deformable 

ANCF shell element i can be expressed as 

( , ) ( , , )i i i i i i i i

k e t M e Q e α Q e e     (30) 

where the vectors i

kQ  and i

eQ  are, respectively, the element elastic and external force vectors; 

and the matrix i
M is the constant element mass matrix defined by 

0

0 0( )
i

i i i T i i

V
dV M S S      (31) 

where 0
i  is the material density at the reference configuration. It is important to notice here that 

the generalized elastic forces are defined as a function of the nodal coordinates and the internal 

EAS parameters iα . The parameter iα  are determined by solving the following equation for each 

element: 
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0
0

( )
( , ) , 1, ,

i

T
EAS i c EAS

i i i i

i iV

W
dV i ne

   
   

  


ε ε ε
h e α 0

α ε
  (32) 

The nodal coordinates i
e  and the EAS internal parameters iα  are determined at every time step 

such that both Eqs. 30 and 32 are satisfied. Using the time integration scheme in Newmark- 

family, the nodal acceleration and velocity vectors at time step 1nt   are discretized in time as 

1 12

1 1

1 1 1
( ) ( 1)

2

( ) ( 1) ( 1)
2

n n n n n

n n n n n

h h

h
h

  

  

  

 

 


     



     


e e e e e

e e e e e

   (33) 

Using the preceding equations, the equations of motion given by Eq. 30 can be expressed as a 

function of unknown variables 1

i

ne  and 1

i

nα  as follows: 

1 1( , )i i i

n n  f e α 0      (34) 

In other words, one needs to seek solutions to the following equations at time step 1nt  : 

1 1

1 1

1 1

( , )
( , )

( , )

i i i

i i i n n

n n i i i

n n

 

 

 

 
  
 

f e α
g e α 0

h e α
    (35) 

Using Newton-Raphson method, Newton difference for 1

i

ne  and 1

i

nα  can be obtained by solving 

the following matrix equation: 

1 1 1

1 1 1

i i i i i i

n n n

i i i i i i

n n n

  

  

         
     

         

f e f α e f

h e h α α h
    (36) 

Using the preceding equation, 1

i

ne  can be obtained as a solution to the following equation: 

1 1

1 1 1 1 1 1
1 1 1

1 1 1 1 1 1

i i i i i i
i i in n n n n n
n n ni i i i i i

n n n n n n

 

     
  

     

         
       
          

f f h h f h
e f h

e α α e α α
  (37) 

The preceding equation is iteratively solved until 1 1( , )i i i

n n  g e α 0  defined by Eq. 35 is satisfied. 
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The internal EAS parameters are determined in each iteration step using the following update 

scheme: 

1

1 ( ) ( , )i i i i i i

k k k



  α α H h e α     (38) 

where Jacobian matrix iH  in the preceding equation is defined by: 

0

2

02

( )
( )

i

i i c EAS
i i T i i

i iV

W
dV

  
 
 


h ε ε

H G G
α ε

   (39) 

where the matrix iG  is defined by Eq. 19. The term 2 2/W ε  leads to a material moduli matrix 

obtained by the second derivative of the elastic energy function. That is, for a linear elasticity 

material model, this matrix is constant. However, for general nonlinear material models, the 

material moduli matrix is no longer constant and the iterative solution procedure is required to 

determine the internal EAS parameters iα  for each element.  

5. NUMERICAL RESULTS 

In this section, several numerical examples are presented in order to demonstrate the 

performance of the continuum mechanics based bi-linear shear deformable ANCF shell element 

developed in this investigation. The effect of the assumed natural strain (ANS) and enhanced 

assumed strain (EAS) approaches on the element accuracy is also discussed. 

5.1  Cantilevered Plate and Shell Subjected to a Point Force 

In the first problem, a rectangular cantilevered plate subjected to a vertical point force at one of 

the corners of the plate is considered as shown in Fig. 3. The length, width and thickness of the 

plate are assumed to be 1.0 m, 1.0 m and 0.01 m. The Young’s modulus and Poisson’s ratio are 

assumed to be 82.1 10  Pa and 0.3, respectively. As shown in Fig. 3, the plate is subjected to 

large deformation at the static equilibrium state. The six models with different strain 
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modifications discussed in Section 3 are considered to demonstrate the effect of the EAS and 

ANS approaches on the element convergence and accuracy. These models are summarized in 

Table 1. In Model-1, no strain modifications are made, while Model-2 is used to demonstrate the 

effect of the ANS approach to alleviate the transverse shear locking for the ANCF shell element. 

A comparison between Model-3 and 4 demonstrates the effect of the in-plane shear/normal 

locking alleviated by the EAS approach, while a comparison between Model-4, 5 and 6 

demonstrates the use of the three different approaches for elimination of the thickness locking, 

i.e., the ANS (Model-4), the EAS (Model-5), and the combined ANS and EAS (Model-6) 

approaches as discussed in Section 3.3.  

To measure the accuracy, error in solution is defined by a deviation of the vertical 

deflection at the force application point on the plate from that of the reference solution obtained 

by ANSYS SHELL181 with 100 100  elements. The numerical convergence of the solution is 

presented in Fig. 4 for each model. The numerical result obtained by the bi-linear shear 

deformable ANCF flat plate element based on the elastic mid-plane approach [9] is also 

presented in this figure for comparison. It is observed from the comparison between Model-1 and 

Model-2 that the accuracy is improved by alleviating the transverse shear locking with the ANS 

approach. However, the solution is converged to the erroneous solution. While the use of the 

EAS for the in-plane shear/normal locking and the ANS for the thickness locking slightly 

improve the rate of convergence, the convergent solution is still incorrect. It is important to 

notice that use of Model-6 with the combined ANS and EAS approach leads to the same result 

with that of the locking-free ANCF plate element based on the elastic mid-plane approach. This 

plate element employs ANS for alleviating the thickness locking. In other words, the strain 

modification used in the elastic mid-plane ANCF shell element corresponds to Model-4 in Table 
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1. However, Model-4 of the continuum mechanics based ANCF shell element leads to an 

erroneous solution due to the thickness locking. While the application of the EAS approach to 

the thickness locking improves the element performance as shown in the result of Model-5, the 

accuracy is not at satisfactory level especially when the small number of elements is used. This 

result clearly indicates severity of the thickness locking exhibited in the continuum mechanics 

based shear deformable ANCF shell element and the locking for the continuum mechanics based 

ANCF shell element needs to be eliminated using the combined EAS and ANS approach as 

demonstrated by the result of Model-6.  

In the second problem, the flat plate is replaced with the quarter cylinder modeled by the 

continuum mechanics based bi-linear ANCF shell elements as shown in Fig. 5, and the radius of 

curvature is assumed to be 1.0 m. The material properties, tip load, width and height are the same 

as the previous example. The deformed shape at the static equilibrium state is shown in Fig. 5 

and the large deformation is exhibited in this problem. As in the previous example, error in 

solution is defined by a deviation of the vertical deflection at the force application point from 

that of the reference solution obtained by ANSYS SHELL181 with 100 100  elements. The 

numerical convergence in solution is presented in Fig. 6 for Models 1 to 6 and ANSYS 

SHELL181 for comparison. The overall trend of the numerical convergence of solutions 

obtained by different models is similar to that observed for the flat plate problem. The result 

clearly indicate that use of the combine EAS and ANS approach leads to the ideal rate of 

convergence and accuracy for the shell structure. 

5.2  Pinched Semi-Cylindrical Shell 

A semi-cylindrical shell as shown in Fig. 7 subjected to a pinching force of 800 N at the middle 

of the free-hanging circumferential periphery is discussed. This problem is used as a benchmark 
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problem for various shell elements [13,23,24,25] and the numerical solution obtained by the 

proposed continuum mechanics based bi-linear shear deformable shell element (Model-6) is 

compared with those in the literatures [13,24,25]. The length, radius and thickness are assumed 

to be 3.048 m, 1.016 m and 0.03 m, respectively. Young’s modulus and Poisson’s ratio are 

assumed to be 72.0685 10  Pa and 0.3, respectively [13,23,24,25]. A quarter cylinder model with 

the symmetric boundary condition is used in the analysis. The deformed shape of the semi-

cylindrical shell is shown in Fig. 7, and the nonlinear load-deflection curve shown in Fig. 8 agree 

well with those presented in the literatures [13,24,25]. Use of the 16 16  elements leads to the 

convergent solution in the case of the continuum mechanics based bi-linear shear deformable 

ANCF shell element. 

5.3  Slit Annular Plate Subjected to Lifting Force 

In the next example, a slit annular plate subjected to a lifting line force is considered as shown in 

Fig. 9. This problem is also widely used as a benchmark problem for shell elements [23]. The 

inside and outside radii of the annular plate are assumed to be 6.0 m and 10.0 m, respectively. 

Young’s modulus and Poisson’s ratio are assumed to be 72.1 10  Pa and 0.0  , respectively 

[23]. One end of the slit is fully clamped, while the other end of the slit is subjected to the line 

force of 50 N. The load-deflection curves at Point A and B shown in Fig. 10 are compared with 

those obtained using ANSYS SHELL181 with 10 60  elements as a reference solution and the 

results are in good agreement with those obtained by the continuum mechanics based bi-linear 

shear deformable ANCF shell element.  

5.4 Natural Frequencies of Square Plate 

The eignefrequency analysis of a square plate with free boundaries studied in the literatures 
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[6,26] is performed in this example. The dimensionless natural frequencies defined by 

0/ωωΩ   with 2 4

0 /D hl ω  are used, where D, , h and l are 3 2/12(1 )D Eh   , the 

material density, height and length of the plate, respectively. The first ten dimensionless 

eigenfrequencies are summarized in Table 2 for Model-6 that employs the combined ANS and 

EAS approach for the thickness locking. Use of the proposed low-order continuum mechanics 

based shear deformable shell element leads to better rate of convergence than the higher-order 

fully parameterized ANCF element presented in literatures [6,26]. 

5.5  Quarter Cylinder Pendulum 

In the last problem, the nonlinear dynamic analysis of a shell structure with a nonlinear material 

model is considered. A quarter cylinder that has the same dimension as the one in Section 5.1 is 

used, and a compressible neo-Hookean material model is used to demonstrate the use of the 

nonlinear material model in the continuum mechanics based ANCF shell element developed in 

this investigation. The Lamé constants   and   are assumed to be 78.077 10  Pa and 

71.212 10  Pa, respectively. The corner of the quarter cylinder is connected to the ground by a 

spherical joint. The deformed shapes of the quarter cylinder under the effect of gravity are shown 

in Fig. 11, in which the shell experiences large deformation. The global X, Y and Z position at 

point A shown in Fig. 11 are presented in Figs. 12-14 for different number of elements, and it is 

shown that use of 32 32  elements leads to the convergent solution. 

6. SUMMARY AND CONCLUSIONS 

In this investigation, a continuum mechanics based bi-linear shear deformable shell element is 

developed using the absolute nodal coordinate formulation for the large deformation analysis of 

multibody shell structures. The elastic forces are formulated using the continuum mechanics 
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approach which allows for the consideration of nonlinear material models such as hyperelasticity 

in the shell element in a straight forward manner. By doing so, the stress distribution along the 

thickness is considered and the elastic forces are evaluated as a continuum volume. It is 

demonstrated by some numerical examples that use of the combined EAS and ANS approach 

alleviates the thickness locking effectively exhibited in the continuum mechanics based bi-linear 

shear deformable ANCF shell element, while the transverse shear locking as well as the in-plane 

shear/normal strain locking can be alleviated by the ANS and EAS, respectively. The locking-

free shear deformable element developed in this investigation can be used for modeling large 

deformable multibody shell structures in challenging engineering problems with material 

nonlinearities that include the modeling of rubber tires for vehicle/terrain interaction, wind 

turbine rotor blades made of composite materials, and biomechanics applications with 

biomaterials. 
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TABLE CAPTIONS 

Table 1. Models for continuum mechanics assumption 

Table 2. First ten dimensionless eigenfrequencies 0/ωωΩ  of the free (FFFF) square plate 

 

FIGURE CAPTIONS 

Figure 1. Kinematics of bi-linear ANCF element 

Figure 2. Sampling points for assumed natural strain 

Figure 3. Deformed shape of a cantilevered plate subjected to a large transverse tip load 

Figure 4. Numerical convergence with large deformation (initially flat) 

Figure 5. Deformed shape of a cantilevered plate subjected to a large transverse tip load 

Figure 6. Numerical convergence with large deformation (initially curved) 

Figure 7. Deformed shape of pinched semi-cylindrical shell 

Figure 8. Load-deflection curve of pinched semi-cylindrical shell  

Figure 9. Deformed shape of slit annular plate subjected to lifting force 

Figure 10. Load-deflection curve of slit annular plate subjected to lifting force 

Figure 11. Deformed shapes of quarter-cylindrical shell pendulum 

Figure 12. Global X-position at Point A 

Figure 13. Global Y-position at Point A 

Figure 14. Global Z-position at Point A 
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Table 1. Strain modification for the continuum mechanics based ANCF bi-linear shell element 

Model 

name 

ANS for transverse 

shear strains 

(
ANS

xz ,
ANS

yz ) 

EAS for in-plane 

strains 

(
EAS

xx ,
EAS

yy ,
EAS

xy ) 

ANS for 

transverse 

normal strain 

(
ANS

zz ) 

EAS for 

transverse 

normal strain 

(
EAS

zz ) 

Combined 

EAS and EAS 

for transverse 

normal strain 

(
ANS/EAS

zz ) 

Model-1 - - - - - 

Model-2 Y - - - - 

Model-3 Y - Y - - 

Model-4 Y Y Y - - 

Model-5 Y Y - Y - 

Model-6 Y Y - - Y 
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Table 2. First ten dimensionless eigenfrequencies 0/ωωΩ  of the free (FFFF) square plate 

 

1x1 2x2 4x4 8x8 16x16 
Analytical 

solution 

1.4328 1.4383 1.4014 1.3734 1.3548 1.3646 

101.5117 2.3477 2.1142 2.0141 1.9721 1.9855 

101.7252 3.1993 2.7186 2.5169 2.4415 2.4591 

101.7288 4.0870 3.8097 3.6023 3.5267 3.5261 

115.9849 4.0906 3.8172 3.6153 3.5524 3.5261 

115.9849 7.5903 7.4061 6.7273 6.2849 6.1900 

138.3927 98.8943 8.4204 6.7365 6.2862 6.1900 

138.6304 98.8949 8.4332 6.7394 6.5196 6.4528 

152.2271 101.7244 8.7211 7.4840 7.1160 7.0181 

152.4032 101.7288 10.5372 8.5216 7.9556 7.8191 
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Figure 1. Kinematics of bi-linear shear deformable ANCF shell element 



UNCLASSIFIED: Distribution Statement A. Approved for public release. #24515 

 28 

 

 

 

 

 

 

 

Figure 2. Sampling points for assumed natural strain 
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Figure 3. Deformed shape of a cantilevered plate subjected to a tip force 
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Figure 4. Numerical convergence of ANCF shell solutions: cantilevered plate subjected to a tip 

force with large deformation 
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Figure 5. Deformed shape of a quarter cylinder subjected to a tip force 
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Figure 6. Numerical convergence of ANCF shell solutions: quarter cylinder subjected to a tip 

force 
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Figure 7. Deformed shape of pinched semi-cylindrical shell 
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Figure 8. Load-deflection curve of pinched semi-cylindrical shell 
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Figure 9. Deformed shape of slit annular plate subjected to lifting force 
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Figure 10. Load-deflection curve of slit annular plate subjected to lifting force 

 



UNCLASSIFIED: Distribution Statement A. Approved for public release. #24515 

 37 

 

 

 

 

 

Figure 11. Deformed shapes of quarter-cylindrical shell pendulum 
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Figure 12. Global X-position at Point A 
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Figure 13. Global Y-position at Point A  
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Figure 14. Global Z-position at Point A 

 

 

 


